Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Public Health Rep ; 137(1): 128-136, 2022.
Article in English | MEDLINE | ID: covidwho-1506259

ABSTRACT

OBJECTIVES: The number of SARS-CoV-2 infections is underestimated in surveillance data. Various approaches to assess the seroprevalence of antibodies to SARS-CoV-2 have different resource requirements and generalizability. We estimated the seroprevalence of antibodies to SARS-CoV-2 in Denver County, Colorado, via a cluster-sampled community survey. METHODS: We estimated the overall seroprevalence of antibodies to SARS-CoV-2 via a community seroprevalence survey in Denver County in July 2020, described patterns associated with seroprevalence, and compared results with cumulative COVID-19 incidence as reported to the health department during the same period. In addition, we compared seroprevalence as assessed with a temporally and geographically concordant convenience sample of residual clinical specimens from a commercial laboratory. RESULTS: Based on 404 specimens collected through the community survey, 8.0% (95% CI, 3.9%-15.7%) of Denver County residents had antibodies to SARS-CoV-2, an infection rate of about 7 times that of the 1.1% cumulative reported COVID-19 incidence during this period. The estimated infection-to-reported case ratio was highest among children (34.7; 95% CI, 11.1-91.2) and males (10.8; 95% CI, 5.7-19.3). Seroprevalence was highest among males of Black race or Hispanic ethnicity and was associated with previous COVID-19-compatible illness, a previous positive SARS-CoV-2 test result, and close contact with someone who had confirmed SARS-CoV-2 infection. Testing of 1598 residual clinical specimens yielded a seroprevalence of 6.8% (95% CI, 5.0%-9.2%); the difference between the 2 estimates was 1.2 percentage points (95% CI, -3.6 to 12.2 percentage points). CONCLUSIONS: Testing residual clinical specimens provided a similar seroprevalence estimate yet yielded limited insight into the local epidemiology of COVID-19 and might be less representative of the source population than a cluster-sampled community survey. Awareness of the limitations of various sampling strategies is necessary when interpreting findings from seroprevalence assessments.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Age Factors , Aged , COVID-19/immunology , Child , Child, Preschool , Colorado/epidemiology , Female , Humans , Infant , Male , Middle Aged , SARS-CoV-2 , Seroepidemiologic Studies , Sex Factors , Sociodemographic Factors , Young Adult
2.
Clin Infect Dis ; 73(9): e3120-e3123, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501040

ABSTRACT

We compared severe acute respiratory syndrome coronavirus 2 seroprevalence estimated from commercial laboratory residual sera and a community household survey in metropolitan Atlanta during April and May 2020 and found these 2 estimates to be similar (4.94% vs 3.18%). Compared with more representative surveys, commercial sera can provide an approximate measure of seroprevalence.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Laboratories , Seroepidemiologic Studies , Surveys and Questionnaires
3.
PLoS One ; 15(9): e0238342, 2020.
Article in English | MEDLINE | ID: covidwho-740403

ABSTRACT

Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19.


Subject(s)
Contact Tracing , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Adolescent , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Child , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Family Characteristics , Female , Health Personnel , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Travel-Related Illness , United States , Young Adult
4.
Emerg Infect Dis ; 26(8): 1671-1678, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-737802

ABSTRACT

We describe the contact investigation for an early confirmed case of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the United States. Contacts of the case-patient were identified, actively monitored for symptoms, interviewed for a detailed exposure history, and tested for SARS-CoV-2 infection by real-time reverse transcription PCR (rRT-PCR) and ELISA. Fifty contacts were identified and 38 (76%) were interviewed, of whom 11 (29%) reported unprotected face-to-face interaction with the case-patient. Thirty-seven (74%) had respiratory specimens tested by rRT-PCR, and all tested negative. Twenty-three (46%) had ELISA performed on serum samples collected ≈6 weeks after exposure, and none had detectable antibodies to SARS-CoV-2. Among contacts who were tested, no secondary transmission was identified in this investigation, despite unprotected close interactions with the infectious case-patient.


Subject(s)
Betacoronavirus/pathogenicity , Contact Tracing/statistics & numerical data , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/diagnosis , Public Health/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Travel , Washington/epidemiology
5.
Emerg Infect Dis ; 26(7): 1571-1574, 2020 07.
Article in English | MEDLINE | ID: covidwho-610771

ABSTRACT

During March 2016-March 2019, a total of 200,936 suspected cases of Middle East respiratory syndrome coronavirus infection were identified in Saudi Arabia; infections were confirmed in 698 cases (0.3% [0.7/100,000 population per year]). Continued surveillance is necessary for early case detection and timely infection control response.


Subject(s)
Coronavirus Infections/epidemiology , Population Surveillance/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Contact Tracing , Disease Outbreaks , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus , Saudi Arabia/epidemiology , Young Adult
6.
N Engl J Med ; 382(10): 929-936, 2020 03 05.
Article in English | MEDLINE | ID: covidwho-127

ABSTRACT

An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient's initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections , Lung/diagnostic imaging , Pneumonia, Viral , Adult , Betacoronavirus/isolation & purification , Blood Chemical Analysis , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Progression , Genome, Viral , Humans , Lung/pathology , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Radiography, Thoracic , SARS-CoV-2 , Sequence Analysis, DNA , Travel , United States
7.
MMWR Morb Mortal Wkly Rep ; 69(6): 166-170, 2020 Feb 14.
Article in English | MEDLINE | ID: covidwho-830

ABSTRACT

In December 2019, a cluster of cases of pneumonia emerged in Wuhan City in central China's Hubei Province. Genetic sequencing of isolates obtained from patients with pneumonia identified a novel coronavirus (2019-nCoV) as the etiology (1). As of February 4, 2020, approximately 20,000 confirmed cases had been identified in China and an additional 159 confirmed cases in 23 other countries, including 11 in the United States (2,3). On January 17, CDC and the U.S. Department of Homeland Security's Customs and Border Protection began health screenings at U.S. airports to identify ill travelers returning from Wuhan City (4). CDC activated its Emergency Operations Center on January 21 and formalized a process for inquiries regarding persons suspected of having 2019-nCoV infection (2). As of January 31, 2020, CDC had responded to clinical inquiries from public health officials and health care providers to assist in evaluating approximately 650 persons thought to be at risk for 2019-nCoV infection. Guided by CDC criteria for the evaluation of persons under investigation (PUIs) (5), 210 symptomatic persons were tested for 2019-nCoV; among these persons, 148 (70%) had travel-related risk only, 42 (20%) had close contact with an ill laboratory-confirmed 2019-nCoV patient or PUI, and 18 (9%) had both travel- and contact-related risks. Eleven of these persons had laboratory-confirmed 2019-nCoV infection. Recognizing persons at risk for 2019-nCoV is critical to identifying cases and preventing further transmission. Health care providers should remain vigilant and adhere to recommended infection prevention and control practices when evaluating patients for possible 2019-nCoV infection (6). Providers should consult with their local and state health departments when assessing not only ill travelers from 2019-nCoV-affected countries but also ill persons who have been in close contact with patients with laboratory-confirmed 2019-nCoV infection in the United States.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks/prevention & control , Mass Screening/statistics & numerical data , Pneumonia, Viral/virology , Adolescent , Adult , Aged , COVID-19 , Centers for Disease Control and Prevention, U.S. , Child , Child, Preschool , Contact Tracing , Coronavirus Infections/prevention & control , Female , Humans , Male , Middle Aged , Pandemics , Risk Assessment , SARS-CoV-2 , Travel-Related Illness , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL